Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J. bras. nefrol ; 38(2): 153-160, graf
Article in Portuguese | LILACS | ID: lil-787878

ABSTRACT

RESUMO Introdução: p-cresol (PC) e p-cresil sulfato (PCS) são responsáveis por muitas das consequências clínicas uremia, tais como a aterosclerose em pacientes com Doença Renal Crônica (DRC). Objetivos: No presente trabalho, investigamos in vitro o impacto de PC e PCS na expressão da quimiocina monocyte chemoattractant protein-1 (MCP-1) via NF-kappa B (NF-κB) p65 em VSMC. Métodos: O PCS foi sintetizado por sulfatação do PC. As VSMC foram extraídas por digestão enzimática da veia do cordão umbilical e caracterizadas por imunofluorescência através do anticorpo α-actina. As células foram tratadas com PC e PCS em suas concentrações normal (n), urêmica (u) e urêmica máxima (m). A viabilidade celular foi avaliada pelo ensaio de MTT. A expressão de MCP-1 foi investigada por ELISA em sobrenadantes de células após o tratamento com as toxinas, com ou sem o inibidor de NF-κB p65. Resultados: Não houve diferença significativa na viabilidade das células após o tratamento com toxinas para todas as concentrações testadas. Houve um aumento significativo na expressão de MCP-1 em células tratadas com PCu e PCm (p < 0,001) e PCSn, PCSu e PCSm (p < 0,001), em comparação com o controle. Quando as VSMC foram tratadas com o inibidor de NF-κB p65 mais PCu e PCm, houve uma diminuição significativa na produção de MCP-1 (p < 0,005). Este efeito não foi observado com PCS. Conclusões: VSMC estão envolvidas na formação da lesão aterosclerótica e produção de MCP-1, o que contribui para o início da resposta inflamatória. Os nossos resultados sugerem que a PC medeia a produção de MCP-1 em VSMC, provavelmente através da via NF-κB p65 e que PCS atue através de uma subunidade diferente da via, uma vez que o inibidor da porção p65 não foi capaz de inibir a produção de MCP-1.


ABSTRACT Introduction: p-cresol (PC) and p-cresyl sulfate (PCS) are responsible for many of the uremia clinical consequences, such as atherosclerosis in Chronic Kidney Disease (CKD) patients. Objectives: We investigate the in vitro impact of PC and PCS on monocyte chemoattractant protein-1 (MCP-1) expression via NF-kappa B (NF-κB) p65 in VSMC. Methods: PCS was synthesized by PC sulfatation. VSMC were extracted by enzymatic digestion of umbilical cord vein and characterized by immunofluorescence against α-actin antibody. The cells were treated with PC and PCS at their normal (n), uremic (u) and maximum uremic concentrations (m). Cell viability was assessed by MTT. MCP-1 expression was investigated by ELISA in cells supernatants after toxins treatment with or without the NF-κB p65 inhibitor. Results: There was no significant difference in cell viability after toxins treatment for all concentrations tested. There was a significant increase in MCP-1 expression in cells treated with PCu and PCm (p < 0.001) and PCSn, PCSu and PCSm (p < 0.001), compared with the control. When VSMC were treated with the NF-κB p65 inhibitor plus PCu and PCm, there was a significant decrease in MCP-1 production (p < 0.005). This effect was not observed with PCS. Conclusions: VSMC are involved in atherosclerosis lesion formation and production of MCP-1, which contributes to the inflammatory response initiation. Our results suggest that PC mediates MCP-1 production in VSMC, probably through NF-κB p65 pathway, although we hypothesize that PCS acts through a different subunit pathway since NF-κB p65 inhibitor was not able to inhibit MCP-1 production.


Subject(s)
Humans , Sulfuric Acid Esters/pharmacology , Chemokine CCL2/biosynthesis , Chemokine CCL2/drug effects , Cresols/pharmacology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Transcription Factor RelA/physiology
2.
Experimental & Molecular Medicine ; : 143-154, 2010.
Article in English | WPRIM | ID: wpr-81940

ABSTRACT

TNF-alpha is a major cytokine involved in inflammatory bowel disease (IBD). In this study, water extract of Grifola frondosa (GFW) was evaluated for its protective effects against colon inflammation through the modulation of TNF-alpha action. In coculture of HT-29 human colon cancer cells with U937 human monocytic cells, TNF-alpha-induced monocyte adhesion to HT-29 cells was significantly suppressed by GFW (10, 50, 100 microg/ml). The reduced adhesion by GFW correlated with the suppressed expression of MCP-1 and IL-8, the major IBD-associated chemokines. In addition, treatment with GFW significantly suppressed TNF-alpha-induced reactive oxygen species production and NF-kappaB transcriptional activity in HT-29 cells. In differentiated U937 monocytic cells, LPS-induced TNF-alpha production, which is known to be mediated through NF-kappaB activation, was significantly suppressed by GFW. In an in vivo rat model of IBD, oral administration of GFW for 5 days (1 g/kg per day) significantly inhibited the trinitrobenzene sulfonic acid (TNBS)-induced weight loss, colon ulceration, myeloperoxidase activity, and TNF-alpha expression in the colon tissue. Moreover, the effect of GFW was similar to that of intra-peritoneal injection of 5-aminosalicylic acid (5-ASA), an active metabolite of sulfasalazine, commonly used drug for the treatment of IBD. The results suggest that GFW ameliorates colon inflammation by suppressing production of TNF-alpha as well as its signaling through NF-kappaB leading to the expression of inflammatory chemokines, MCP-1 and IL-8. Taken together, the results strongly suggest GFW is a valuable medicinal food for IBD treatment, and thus may be used as an alternative medicine for IBD.


Subject(s)
Animals , Humans , Rats , Cell Adhesion/drug effects , Cell Extracts/administration & dosage , Chemokine CCL2/biosynthesis , Coculture Techniques , Colon/drug effects , Grifola , HT29 Cells , Inflammatory Bowel Diseases/chemically induced , Interleukin-8/biosynthesis , Intestinal Mucosa/drug effects , Monocytes/drug effects , NF-kappa B/genetics , Peroxidase/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Stomach Ulcer , Transcription, Genetic/drug effects , Trinitrobenzenesulfonic Acid/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , U937 Cells , Weight Loss
3.
Experimental & Molecular Medicine ; : 757-764, 2009.
Article in English | WPRIM | ID: wpr-71507

ABSTRACT

Monocyte chemoattractant protein-1 (MCP1) plays a key role in monocyte/macrophage infiltration to the sub-endothelial space of the blood vessel wall, which is a critical initial step in atherosclerosis. In this study, we examined the intracellular signaling pathway of IL-1beta-induced MCP1 expression using various chemical inhibitors. The pretreatment of a phosphatidylcholine (PC)-specific PLC (PC-PLC) inhibitor (D609), PKC inhibitors, or an NF-kappaB inhibitor completely suppressed the IL-1beta-induced MCP1 expression through blocking NF-kappaB translocation to the nucleus. Pretreatment with inhibitors of tyrosine kinase or PLD partially suppressed MCP1 expression and failed to block nuclear NF-kappaB translocation. These results suggest that IL-1beta induces MCP1 expression through activation of NF-kappaB via the PC-PLC/PKC signaling pathway.


Subject(s)
Humans , Active Transport, Cell Nucleus/drug effects , Aorta/pathology , Atherosclerosis/immunology , Bridged-Ring Compounds/pharmacology , Cell Nucleus/metabolism , Cells, Cultured , Chemokine CCL2/biosynthesis , Estrenes/pharmacology , Genistein/pharmacology , Interleukin-1beta/metabolism , Myocytes, Smooth Muscle/drug effects , NF-kappa B/metabolism , Phospholipases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrrolidinones/pharmacology , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Thiones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL